论文,毕业论文,mba论文

不等式证明的若干方法


类型:案例|7000字, 类别:原创|系数:3.36, 附件:开题报告|文献综述

【摘要】

不等式证明的若干方法

无论是在初等数学的学习还是高等数学的学习中,不等式都起着十分重要的作用。然而不等式的证明是不等式知识的一个重要组成部分。在本文中,我总结了数学中一些证明不等式的常用方法。在初等数学的不等式的证明中经常用到的方法有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.然而在高等数学不等式的证明中经常会用到一些定理和著名的不等式等等,这样会使不等式的证明有理有据,能够使我们进一步的探讨和研究不等式的证明以及今后的学习。通过学习上述这些证明方法,可以帮助我们解决生活中的一些实际问题,还可以培养我们逻辑推理论证能力和抽象思维能力,并且能使我们养成勤于思考、善于思考的良好的学习习惯.

关键词:不等式;比较法;数学归纳法;函数
ABSTRACT

   In elementary mathematics learning and learning in higher mathematics, inequalities plays a very important content. However, inequality is an important component in the equality proof. In this paper, I summarized many mathematical inequality proof methods in the math. Inequality in elementary mathematical proof commonly use in comparative law, for example commercial, analysis, synthesis, mathematical induction, the reduction to absurdity, discriminant, function, Geometry and so on. Then in the inequality of higher mathematics analyst often use some famous theorem and inequality and so on. So that the inequality proof method will be improved, We can get more efficient and help us further explore and study the inequality proof and study in the future. Through the study of these proof methods, we can also solve some practical problems in our lives, and develop logical reasoning ability, demonstrated the ability to abstract thinking and grow hard thinking and also let us be good at thinking of the good study habit.

     Key words: inequality; comparative law; mathematical induction; function.

 

*此文为原创|获取全文在线咨询→[电脑QQ][手机QQ]【写作协助】

| |